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Introduction
Bulk RNA-Seq vs ScRNA-seq



Introduction
Bulk RNA-seq

• Measures the average expression level for each gene across a large population of input cells

• Useful for comparative transcriptomics, e.g. samples of the same tissue from different species

• Useful for quantifying expression signatures from ensembles, e.g. in disease studies

• Insufficient for studying heterogeneous systems



Introduction
scRNA-Seq

• Measures the distribution of expression levels for each gene across a population of cells

• Better understand the dynamics of gene expression pattern

• Allows to study new biological questions in which cell-specific changes in transcriptome are 
important, e.g. cell type identification, heterogeneity of cell responses

• Reveal heterogeneity within population of cells

• High dimensionality: thousand of cells 



Introduction
Bulk RNA-Seq vs ScRNA-seq

scRNA-seq noise
Technical factors

Biological factors

Technical variability

low amount of mRNAs
amplification
dropouts events

Biological variability

stochastic nature of transcription



Introduction
scRNA-Seq data preprocessing

• Obtain RNA-Seq expression data

• Filter Cells - low quality cells

• Filter Fatures – lowly expressed genes

• Normalization

• Imputation



Normalization

Adjust for unwanted biological and technical effects that can mask the signal of interest

Several experimental sources of systematic biases due to:

• Sequencing depth
• Amplification
• Gene Length
• GC-content
• mRNA content

UMI – based protocol remove amplification biases



Normalization
Cell/Gene specific effects

Cell specific effects
introduce bias in the 
LFC on raw read counts

Gene specific effects
introduce bias in the 
LFC on raw read counts

Systematic biases affect mesasurements of gene expression



Normalization

Two types of normalization:

Ø Within –sample normalization which remove gene specific biases (GC content)

Ø Between – sample normalization which adjusts for effects related to distributional differences
in read counts between cells (sequencing depth)



Normalization
Scaling Factor

Global-scaling factor normalization methods are inherited from bulk RNA-Seq data analysis

Motivation: bring cell –specific measure on to a common scale by standardizing a quantity of interest across
cells by assuming that most genes are not differentially expressed

Methods:

• Counts per Million CPM
• Upper quantile UQ
• Full quantile FQ
• Trimmed Mean of M-values TMM
• DESEq normalization



Normalization
Methods

CPM: Counts scaled by the number of reads N (total number of reads o library size) times one million

Standardizes the total number of reads between cells – library size normalization
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UQ : scaling factor is proportional to the 75th percentile of the distribution of counts within each cell

FQ : all quantile of cell-specific cell are matched to a reference distribution

Quantile-based normalization methods are problematic in scRNA-Seq
due to the high frequency of zero counts



Normalization
Methods

TMM normalization: trims away extreme log-fold-changes to normalize the counts based on the remaining
set on non differentially expressed genes

Step 1: double trimming based on log-fold changes M and absolute intensity A
Step 2: the normalization factor is calculated using a reference sample

Procedure:

DESeq normalization: defines scaling factor estimates based on a pseudo-reference sample based
on a geometric mean



Normalization
Examples

RAW data PCA

https://hemberg-lab.github.io/scRNA.seq.course/

https://hemberg-lab.github.io/scRNA.seq.course/


Normalization
Examples

CPM data PCA

https://hemberg-lab.github.io/scRNA.seq.course/

https://hemberg-lab.github.io/scRNA.seq.course/


Normalization
Examples

TMM normalized data PCA

https://hemberg-lab.github.io/scRNA.seq.course/

https://hemberg-lab.github.io/scRNA.seq.course/


Imputation

• The gene is not expressed in the cell and hence there are no transcripts to sequence

• The gene is expressed, but for some reason the transcripts is lost somewhere prior to sequencing

• The gene is expressed and transcripts is captured, but the sequencing depth is not sufficient to produce 
any reads.

One of the main challenges when analyzing scRNA-seq data is the presence of zeros. 

Dropouts events

a gene is observed at a moderate expression level in one cell but undetected in another cell



Imputation
Methods

scImpute: a statistical method to accurately and robustly impute the dropouts in scRNA-Seq data.

scImpute first learns each gene’s dropout probability in each cell based on a mixture model. Next, scImpute
imputes the (highly probable) dropout values in a cell by borrowing information of the same gene in other
similar cells, which are selected based on the genes unlikely affected by dropout events

Li et al. Nature Communication 2018



Imputation
Methods

• dimension reduction of scRNA-seq data

• normalization of scRNA-seq data

• clustering of cell populations

• differential gene expression analysis

• time-series analysis of gene expression dynamics

scImpute can be applied before:

https://github.com/Vivianstats/scImpute

https://github.com/Vivianstats/scImpute


Imputation
Methods

Ø imputes missing expression values by sharing information across similar cells, based on the idea of heat
diffusion.

Ø create a Markov transition matrix, constructed by normalizing the similarity matrix of single cells.

Ø In the imputation of a single cell, the weights of the other cells are determined by the transition matrix.

Markov Affinity-based Graph Imputation of Cells (MAGIC)

https://github.com/KrishnaswamyLab/MAGIC

https://github.com/KrishnaswamyLab/MAGIC


Differential expression

AIM Find genes that vary between cell type and state or in response to a perturbation

In single cell data, once the groups of cell have been identified one can find differentially 
expressed genes either by comparing gene expression between clusters in a pairwise manner.



Differential expression

• A hypothesis is an assumption about the population parameter.
• A parameter is a characteristic of the population, like its mean or 

variance.
• The parameter must  be identified before analysis.

What is a Hypothesis of a test?



Differential expression

• States the Assumption to be tested
e.g. Our class mean age is 50  (H0: µ=50)

• Begin with the assumption that the null hypothesis is TRUE. 
(Similar to the notion of  innocent until proven guilty)

The Null Hypothesis, H0

The Null Hypothesis may or may not be rejected, but our aim is to REJECT the null 
hypothesis!



Differential expression

• Is the opposite of the null hypothesis
e.g. The average age of our class is different from 50  (H1: µ ≠50)

• Is generally the hypothesis that is believed to be true by the researcher!

The Alternative Hypothesis,  H1



Differential expression

For each gene j the test is expressed in term of a Statistic
and a p-value

Null Hypothesis
Ho: µj(WT)=µj(KO)

Multiple testing corretion problem

We have to simultaneously test, for each gene, the null hypothesis: gene 
expression has not changed



Differential expression

Single cell data characteristics:

• Low library size
• High noise level
• Large fraction of dropouts events

It is not clear whether DE method tha have been developed for bulk RNA-Seq are 
suitable also for scRNA-seq



Differential expression

Methods for bulk RNA-Seq

Ø edgeR
Ø DESeq – DESeq2

Methods for scRNA-Seq

Ø MAST
Ø SCDE
Ø Monocle
Ø D3E
Ø SeuratBimod
Ø scDD

Non parametric test

Ø Wilcoxon test

Many others



Differential expression
Models

Ø Perhaps the simplest statistical model for count data is the Poisson, which has only one parameter. 

Ø Under a Poisson model, the variance of the expression for a particular gene is equal to its mean 
expression. 

Ø However, due to a variety of types of noise (both biological and technical), a better fit for read count 
data is usually obtained by using a negative binomial model, for which the variance can be written as:

variance = mean + overdispersion x mean^2

Ø Since the overdispersion is a positive number, the variance under the negative binomial model is 
always higher than for the Poisson.



Differential expression
EdgeR

EdgeR

Ø Read counts are modeled by a negative binomial distribution
For each gene, the variance is related to the mean by σ"=μ + αµ" where α is the over-dispersion parameter

Ø The method estimates the gene –wise dispersions using a conditional maximum likelihood procedure

Ø An empirical Bayes procedure is used to shrink the dispersions towards a consensus value

Ø The glmFit function fit the data and the glmLRT compares the two conditions

Ø TMM normalization procedure is carried out to account for the different sequencing depths between 
the samples



Differential expression
DESeq

DESeq

Ø Read counts are modeled by a negative binomial distribution

Ø The variance of negative binomial distribution σ" is modeled as

σ"=μ + #"ν

where s is the size factor e ν is the true concentration of reads

Ø a scaling factor normalization procedure is carried out to account for the varying sequencing depths 
of the different samples



Differential expression
MAST

MAST (Model-based Analysis of Single-cell Transcriptomics)

Ø models single-cell gene expression using a two part generalized linear model

Ø introduces the CDR (Cellular Detection Rate) as the fraction of genes expressed in a single cell

Ø CDR is modeled as a covariate

Ø Baysian framework to regularized model parameters

Take into account dropouts and bimodal expression distribution in which expression
is either strongly non zeros or not detectable



Differential expression
SCDE

SCDE uses a bayesian approach to single cell differential expression analysis

Ø SCDE models the read counts computed for each gene using a mixture of Negative Binomial NB distribution
and a Poisson distribution

Ø NB distribution models the transcripts that are amplified and detected

Ø The low-magnitude Poisson distribution model the unobserved or background-level signal transcripts
that are not amplified (dropouts events)

Ø A Bayesian approach is used for differential expression



Differential expression
Monocle

Monocle is a tool designed for single-cell RNA-Seq for ordering cells by process through differentiation stage

Ø Identifies genes that change significantly over the time 

Ø Identifies genes that are differentially expressed across different cell type or conditions

Ø It uses a Generalized Linear Additive Model (GAM)



Differential expression
Discussion

Ø Prefiltering of genes is essential for obtaining a good and robust performance for several methods

Ø EdgeR tend to call lowly expressed genes with many zeros significant if they are present in the data, 
but otherwise performs well

Ø Methods developed for bulk RNA-Seq analysis doesn’t perform worse than those specifically developed
for scRNA-Seq data, but sometimes show a stronger dependence on data prefiltering

Ø In particular, EdgeR and MAST have good performances

Soneson et al, Nature Methods 2018



Differential expression
Example
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Differential expression

SCDE method



Conclusions

Ø Single-cell analysis is an exciting and rapidly expanding field

Ø Single cell improves our understanding of fundamental biological problems and 
helps us to better understand the nature and complexity of human disease in 
order to develop more effective therapies. 

Ø Single-cell data present a number of intrinsic challenges, including systematic
noise, the features of biological systems, and the sparsity and complexity of the 
data. 

Ø Invest in development of new methods. 


