ELIXIR-IIB Training Platform Single-Cell RNA Sequencing and Data Analysis

Theory Refresher and Software Overview: Cell Ranger

Francesco Panariello, Bioinformatician

Single-cell Gene Expression Profiling: Experimental Overview

10x GemCode™ Technology for Single Cell Partitioning

Single-cell Gene Expression Profiling: Experimental Overview

Transcriptional profiling of individual cells

10x™ Barcode

The 16bp 10x barcode is unique to each Gel Bead and tells you which cell the transcript is from.

Unique Molecular Identifier (UMI)

The 16bp 10x barcode is unique to each Gel Bead and tells you which cell the transcript is from.

The 10bp UMI enables accurate quantitation of cell expression levels.

10x[™] Barcode

The 16bp 10x barcode is unique to each Gel Bead and tells you which cell the transcript is from.

Unique Molecular Identifier (UMI)

The 10bp UMI enables accurate quantitation of cell expression levels.

Sample index

The 8bp sample index allows to assign each barcoded read to its sample of origin.

ELIXIR-IIB Training Platform
Single-Cell RNA Sequencing and Data Analysis

Theory Refresher and Software Overview: Cell Ranger

Cell RangerTM Pipeline

Transcriptomic computational workflow: a standard approach

Transcriptomic computational workflow: a standard approach

RNA-seq bulk

Demultiplexing

Quality control / Trimming

Reads Alignment

Reads Quantification

Downstream Analyses

scRNA-seq - Cell Ranger

Demultiplexing

Alignment to transcriptome

Barcode and UMI filtering

Marking duplicates

Filtering cells

Downstream Analyses

Cell Ranger is a set of analysis pipelines that process Chromium single-cell RNA-seq output to align reads, generate feature-barcode matrices and perform clustering and gene expression analysis.

Cell Ranger includes four pipelines relevant to single-cell gene expression experiments

cellranger mkfastq
cellranger count
cellranger aggr
cellranger reanalyze

Cluster Mode

- Run on SGE and LSF
- Each node must have 8+ cores and 8GB+ RAM/core
- Shared filesystem between nodes (e.g. NFS)

Local Mode

- Run on single, standalone Linux system
- CentOS/RedHat 5.2+ or Ubuntu 8.04+
- 8+ cores, 64GB RAM

Cell Ranger™ Pipeline: Demultiplexing

Demultiplexing is the step through which sequencing reads are divided into separate **fastq files** for each sample index.

@SN1083:379:H8VA1ADXX:2:1101:1248:2144 1:N:0:12 CCTTAAAAATGTACCCATTAGGCCTAAGTAGCTAGCTGGGCCC

BBBBFFFFIIIIIFIII<FFFFFIIIBBBBUUUUFIIIIDDDDIIIIFIFIFII

Cell RangerTM Pipeline: Demultiplexing

The *cellranger mkfastq* pipeline allows to demultiplex an Illumina sequencing run folder into FASTQ files.

The *cellranger mkfastq* pipeline allows to demultiplex an Illumina sequencing run folder into FASTQ files.

- 10x samples indeces are used to assign reads to their sample of origin
- They are supplied on a 96 well plate
- Each 10x sample index is composed of 4 oligos
 - > 10x index: SI-GA-A1
 - ➤ 4 Oligos: "GGTTTACT", "CTAAACGG", "TCGGCGTC", "AACCGTAA"

The *cellranger mkfastq* pipeline allows to demultiplex an Illumina sequencing run folder into FASTQ files.

The association between indeces and samples is provided through a samplesheet in .csv (comma-separated values) format.

Lane,Sample,Index

- *,Sample_1,SI-GA-A1
- *,Sample_2,SI-GA-A2
- *,Sample_3,SI-GA-A3

Cell RangerTM Pipeline: Alignment to transcriptome

- Read alignment consists in the assignment of sequencing reads to the most likely locus of origin.
- Reads mapping can be performed on the genome, as well as on the transcriptome, in a fasta format.
- To speed up the process, fasta files are usually indexed.
- A GTF file is also used to provide information about gene location, biotype, etc.

References

- 10x annotation uses ENSEMBL genomes and gene annotations.
- 10x pre-built references: Human (hg19 and GRCh38), Mouse, Human and Mouse.
- Bundled *mkgtf* utility filters a GTF file by key value pairs in the attributes column for transcript biotype (e.g. protein-coding, noncoding, linc RNA).
- Bundled *mkref* utility generates a 10x reference package from any FASTA and GTF gene file (STAR compatible).

Alignment

- Alignment done via STAR (Spliced Transcripts Alignment to a Reference):
 - Robust, open-source, junction-aware RNAseq aligner.
 - Aligns reads to the genome and transcriptome simultaneously.
- STAR memory usage:
 - mkref script builds STAR reference such that it uses max 16 GB of memory.
- Only use confidently mapped reads aligning to transcriptome.

Cell RangerTM Pipeline: Barcode and UMI filtering

Cell Ranger™ Pipeline: Barcode and UMI filtering

Cell barcodes:

- Must be on a static list of known cell barcode sequences
- May be one mismatch away from the list ONLY IF the mismatch occurs at a low-quality position (the barcode is then corrected

Cell Ranger™ Pipeline: Barcode and UMI filtering

UMIs:

- Must not be a homopolymer, e.g. AAAAAAAAA
- Must not contain N
- Must not contain bases with base quality < 10
- UMIs that are 1 nucleotide mismatch away from a higher-count UMI are corrected to that UMI if they share a cell barcode and gene.

Cell RangerTM Pipeline: Marking duplicates and Filtering cells

Marking duplicates:

 Record which reads are duplicates of the same RNA molecule.

Unfiltered gene-barcode matrix

 Count only the unique UMIs as unique RNA molecules.

Filtering cells:

- Sum UMI counts for each barcode.
- Select barcodes with total UMI count ≥ 10% of the 99th percentile of the expected recovered cells.

Filtered gene-barcode matrix

Cell Ranger™ Pipeline: cellranger count

The *cellranger count* pipeline allows to run all the previous steps (secondary analysis), once per sample.

cellranger count --sample=Sample_1 --transcriptome=refdata-cellranger/GRCh38 --fastqs=HAD58ADXX/Sample_1

BAM – Genome-Aligned Reads

- Indexed BAM containing position-sorted, aligned reads
- Barcodes and UMIs attached as standard tags

BAM – Genome-Aligned Reads

- Indexed BAM containing position-sorted, aligned reads
- Barcodes and UMIs attached as standard tags

MEX – Gene/Barcode Matrix

- "Market Exchange" format, a sparse matrix representation
- Suitable for downstream analysis in Python and R

Gene	ATCAGGGACAGA	AGGGAAAATTGA	TTGCCTTACGCG	TGGCGAAGAGAT	TACAATTAAGGC
LOXL4	0	0	0	0	0
PYROXD2	1	0	1	1	0
HPS1	23	12	9	8	3
CNNM1	0	2	1	0	0
GOT1	22	6	7	9	3

BAM – Genome-Aligned Reads

- Indexed BAM containing position-sorted, aligned reads
- Barcodes and UMIs attached as standard tags

MEX – Gene/Barcode Matrix

- "Market Exchange" format, a sparse matrix representation
- Suitable for downstream analysis in Python and R

.cloupe File - Analysis

- 2D projections
- Cell clustering
- Differential expression
- Interactive exploration

Gene	ATCAGGGACAGA	AGGGAAAATTGA	TTGCCTTACGCG	TGGCGAAGAGAT	TACAATTAAGGC
LOXL4	0	0	0	0	0
PYROXD2	1	0	1	1	0
HPS1	23	12	9	8	3
CNNM1	0	2	1	0	0
GOT1	22	6	7	9	3

BAM – Genome-Aligned Reads

- Indexed BAM containing position-sorted, aligned reads
- Barcodes and UMIs attached as standard tags

MEX - Gene/Barcode Matrix

- "Market Exchange" format, a sparse matrix representation
- Suitable for downstream analysis in Python and R

.cloupe Fie - Analysis

- 2D projections
- Cell clustering
- Differential expression
- Interactive exploration

HTML, CSV – Run Summary

Run metrics and basic static visualizations

Gene	ATCAGGGACAGA	AGGGAAAATTGA	TTGCCTTACGCG	TGGCGAAGAGAT	TACAATTAAGGC
LOXL4	0	0	0	0	0
PYROXD2	1	0	1	1	0
HPS1	23	12	9	8	3
CNNM1	0	2	1	0	0
GOT1	22	6	7	9	3

Cell RangerTM Pipeline: Cell Ranger Summary Tab

Estimated Number of Cells 8,391

Mean Reads per Cell 93,441

Median Genes per Cell 1,296

Sequencing	
Number of Reads	784,064,148
Valid Barcodes	98.5%
Reads Mapped Confidently to Transcriptome	61.4%
Reads Mapped Confidently to Exonic Regions	65.3%
Reads Mapped Confidently to Intronic Regions	24.0%
Reads Mapped Confidently to Intergenic Regions	3.4%
Sequencing Saturation	90.5%
Q30 Bases in Barcode	98.2%
Q30 Bases in RNA Read	78.9%
Q30 Bases in Sample Index	96.4%
Q30 Bases in UMI	98.2%

Sample		
Name	pbmc8k	
Description	Peripheral blood mononuclear cells (PBMCs) from a healthy donor	
Transcriptome	GRCh38	
Chemistry	Single Cell 3' v2	
Cell Ranger Version	1.3.0	

Cell Ranger™ Pipeline: QC Plot

Typical Sample Profile

Defined cliff and knee

Metric	Value
Barcodes	> 90,000
Cell Barcodes	> 1,000
UMIs	> 10,000

Low Barcode Counts (e.g. Clog, low-depth, low ambient RNA)
Cells

Low number of barcodes detected

Metric	Value	
Barcodes	~ 15,000	
Cell Barcodes	> 100	
UMIs	> 10,000	

Cell RangerTM Pipeline: QC Plot

Typical Sample Profile

Defined cliff and knee

Metric	Value
Barcodes	> 90,000
Cell Barcodes	> 1,000
UMIs	> 10,000

Loss of Single Cell Behaviour (e.g. Lysis or Wetting failure) Cells

Lack of defined cliff and knee

Metric	Value
Barcodes	> 90,000
Cell Barcodes	~ 10,000
UMIs	> 10,000

Cell RangerTM Pipeline: QC Plot

Typical Sample Profile

Defined cliff and knee

Metric	Value
Barcodes	> 90,000
Cell Barcodes	> 1,000
UMIs	> 10,000

Loss of Single Cell Behaviour (e.g. High fraction of ambient RNA) Cells

Lack of defined cliff and knee

Metric	Value
Barcodes with > 1,000 UMIs	Few

Cell RangerTM Pipeline: Additional Quality Metrics

Estimated Number of Cells 8,391

Mean Reads per Cell 93,441

Median Genes per Cell 1.296

Sample		
Name	pbmc8k	
Description	Peripheral blood mononuclear cells (PBMCs) from a healthy donor	
Transcriptome	GRCh38	
Chemistry	Single Cell 3' v2	
Cell Ranger Version	1.3.0	

Reads confidently mapped to transcriptome (<30%)

- Reads mapped to wrong genome or different strain
- Read length is too short
- Custom reference contains overlapping genes

Read2 Q30 metrics are low (<70%)

- Sequencing problems
- Suboptimal loading concentration on sequencer

Cell RangerTM Pipeline: Workflows

Cell Ranger™ Pipeline: Workflows – cellranger aggr

Cell Ranger™ Pipeline: Workflows – cellranger aggr

The *cellranger aggr* pipeline pools the results from single runs of cellranger counts, using the *molecule_info.h5* files

The *cellranger aggr* pipeline pools the results from single runs of cellranger counts, using the *molecule_info.h5* files

WARNING!!

By default, the reads from each GEM well are subsampled such that all GEM wells have the same effective sequencing depth, measured in terms of confidently mapped reads per cell.

Cell Ranger™ Pipeline: Downstream anaysis – cellranger reanalyze

Cellranger counts produces a .cloupe file (accessible through the Desktop app **LOUPE**) containing standard downstream analyses, run with default parameters:

- 2D projections
- Cell clustering
- Differential expression
- Interactive exploration

Cell RangerTM Pipeline: Downstream anaysis – cellranger reanalyze

Cellranger counts produces a .cloupe file (accessible through the Desktop app **LOUPE**) containing standard downstream analyses, run with default parameters:

- 2D projections
- Cell clustering
- Differential expression
- Interactive exploration

The *cellranger reanalyze* pipeline re-runs tertiary analyses performed on the feature-barcode matrix using custom parameter settings.

https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome

ELIXIR-IIB Training Platform
Single-Cell RNA Sequencing and Data Analysis

Theory Refresher and Software Overview: Cell Ranger

Data pre-filtering

Data pre-filtering overview

Several factors (variables) influence scRNA-seq data:

- Multiplets
- Apoptotic cells
- Drop-out effect

Data pre-filtering overview

Several factors (variables) influence scRNA-seq data:

- Multiplets
- Apoptotic cells
- Drop-out effect

GENES

Data pre-filtering overview

Several factors (variables) influence scRNA-seq data:

- Multiplets
- Apoptotic cells
- Drop-out effect

GENES

Number of detected genes

Number of total reads per cell

% of reads aligned to mitochondrial genes

Suggestion from several tools (Seurat, Scanpy):

Lower limit → More than 200

Remove cells poorly informative

• Upper limit → Less than 2,500-3,000

Remove outlier cells/multiplets (?)

- Doublet Detection
 https://github.com/JonathanShor/DoubletDetection/bl
 ob/master/docs/DoubletDetection.pdf
- Mixed gene expression
- Classification of low quality cells from single-cell RNA-seq data (Ilicic et al. 2016)

detected genes

Suggestion from several tools (Seurat, Scanpy):

Lower limit → More than 200

Remove cells poorly informative

Upper limit → Less than 2,500-3,000

Remove outlier cells/multiplets (?)

- Doublet Detection
 https://github.com/JonathanShor/DoubletDetection/bl
 ob/master/docs/DoubletDetection.pdf
- Mixed gene expression
- Classification of low quality cells from single-cell RNA-seq data (Ilicic et al. 2016)

High percentage of mitochondrial gene expression may be due to:

- Apoptotic cells
- Lysed cells

High percentage of mitochondrial gene expression may be due to:

- Apoptotic cells
- Lysed cells

Cells with more than 5-7% of mtRNAs should be removed

Aknowledgements

Organizers

Davide Cacchiarelli

Vincenza Colonna

ELIXIR-IIB Training Platform

10x Genomics

Chiara Reggio

Bashir Sadet

Carlo Erba

Stefano Tonacchera

Cacchiarelli's Lab

Patrizia Annunziata

Valentina Bouché

Antonio Grimaldi

Anna Manfredi

Lorenzo Vaccaro

Bioinformaticians

Annamaria Carissimo

Gennaro Gambardella

